Equilibria, Energetics and Elements How Fast? / 71

(i)	O ₃ : Exp 2 has 4 times [H ₂] as Exp 1 and rate increases by 4 (1),		
	so order = 1 with respect to O_3 (1)		
	C_2H_4 : Exp 3 has 2 × [C_2H_4] and 2 × [O_3] as Exp 2; and rate has increased by 4 (1),		
	so order = 1 with respect to C_2H_4 (1)		
	rate = $k [O_3] [C_2H_4]$ (1)	5	
(ii)	use of $k = \text{rate} / [O_3] [C_2H_4] = 1.0 \times 10^{-12} / (0.5 \times 10^{-7} \times 1.0 \times 10^{-8})$ to obtain a calculated value (1) $k = 2 \times 10^3$ (1) units: dm ³ mol ⁻¹ s ⁻¹ (1)	3	
(iii)	rate = $1.0 \times 10^{-12} / 4 = 2.5 \times 10^{-13} \pmod{\text{dm}^{-3} \text{s}^{-1}}$ (1)	1	
(iv)	rate increases and <i>k</i> increases (1)	1	[10]
	(i) (ii) (iii) (iv)	(i) O ₃ : Exp 2 has 4 times [H ₂] as Exp 1 and rate increases by 4 (1), so order = 1 with respect to O ₃ (1) C_2H_4 : Exp 3 has 2 × [C ₂ H ₄] and 2 × [O ₃] as Exp 2; and rate has increased by 4 (1), so order = 1 with respect to C ₂ H ₄ (1) rate = k [O ₃] [C ₂ H ₄] (1) (ii) use of k = rate / [O ₃] [C ₂ H ₄] = 1.0 × 10 ⁻¹² / (0.5 × 10 ⁻⁷ × 1.0 × 10 ⁻⁸) to obtain a calculated value (1) $k = 2 \times 10^3$ (1) units: dm ³ mol ⁻¹ s ⁻¹ (1) (iii) rate = 1.0×10^{-12} /4 = 2.5×10^{-13} (mol dm ⁻³ s ⁻¹) (1) (iv) rate increases and k increases (1)	(i) $O_3: Exp 2 has 4 times [H_2] as Exp 1 and rate increases by 4 (1), so order = 1 with respect to O_3 (1)C_2H_4: Exp 3 has 2 \times [C_2H_4] and 2 \times [O_3] as Exp 2;and rate has increased by 4 (1),so order = 1 with respect to C_2H_4 (1)rate = k [O_3] [C_2H_4] (1) 5(ii) use of k = rate / [O_3] [C_2H_4] = 1.0 \times 10^{-12} / (0.5 \times 10^{-7} \times 1.0 \times 10^{-8})to obtain a calculated value (1)k = 2 \times 10^3 (1)units: dm3 mol-1 s-1 (1) 3(iii) rate = 1.0 \times 10^{-12} / 4 = 2.5 \times 10^{-13} (mol dm-3 s-1) (1) 1(iv) rate increases and k increases (1) 1$

2. $1\frac{1}{2}O_2(g) \rightarrow O_3(g)/O_2(g) + \frac{1}{2}O_2(g) \rightarrow O_3(g)$ (1)

NO is a catalyst (1) as it is (used up in step 1 and) regenerated in step 2/ not used up in the overall reaction(1) allow 1 mark for 'O/NO₂ with explanation of regeneration.'

3. (i) H₂: Exp 2 has 2.5 times [H₂] as Exp 1 and rate increases by 2.5 (1), so order = 1 with respect to H₂ (1)
NO: Exp 3 has 3 x [NO] as Exp 2; and rate has increased by 9 = 3² (1), so order = 2 with respect to NO (1)
QWC At least two complete sentences where the meaning is clear.

(ii) rate =
$$k[NO]^2 [H_2]$$
 (1) 1

[3]

	(iii)	$k = \frac{\text{rate}}{[\text{NO}]^2[\text{H}_2]} / \frac{2.6}{0.10^2 \times 0.20} $ (1)		
		= 1300 (1) units: $dm^6 mol^{-2} s^{-1}$ (1) allow 1 mark for 7.69×10^{-4} or 1.3×10^x (x not 3)	3	[9]
4.	(i)	$1\frac{1}{2}O_2(g) \to O_3(g)/O_2(g) + \frac{1}{2}O_2(g) \to O_3(g)$ (1)		
		NO is a catalyst (1) as it is (used up in step 1 and) regenerated in step 2/ not used up in the overall reaction(1) allow 1 mark for 'O/NO ₂ with explanation of regeneration.'	3	
	(ii)	Rate = k [NO] [O ₃] (1) Species in rate equation match those reactants in the slow step / rate determining step (1)	2	[5]
5.	(a)	 (i) Curve downwards starting at t = 0 ✓ with slope gradually levelling off with no increase ✓ (don't worry about hitting the x axis) 	2	
		(ii) Tangent shown at start \checkmark	1	
		 (iii) Half-life is constant OR: draw tangents and then plot a 2nd graph of tangent or rate against concentration, which is a straight line through the origin. ✓ 	1	

(iv) Straight line through origin \checkmark

From table, rate stays same when $[I_2]$ doubles (1) Therefore zero order w.r.t. $[I_2]$ (1) Order with no justification does **not** score.

rate = $k[H^+][CH_3COCH_3]$ (1) (from all three pieces of evidence)

$$k = \frac{\text{rate}}{[\text{H}^+][\text{CH}_3\text{COCH}_3]} / \frac{2.1 \times 10^{-9}}{0.02 \times 1.5 \times 10^{-3}}$$
(1)
= 7.0 × 10⁻⁵ (1) dm³ mol⁻¹ s⁻¹ (1)
accept 7 × 10⁻⁵

4

2

1

6.

[11]

	rate d	letermining step involves species in rate equation (1)		
	two s	teps that add up to give the overall equation (1)		
	The l i.e., f CH ₃ C [CH ₃	eft hand side of a step that contains the species in rate-determining step (1) for marking points 2 and 3: $COCH_3 + H^+ \rightarrow [CH_3COHCH_3]^+$ $COHCH_3^+] + I_2 \rightarrow CH_3COCH_2I + HI + H^+$	3	
	orgar using Use c const	specialist vocabulary where appropriate of the following four words/phrases: ant, half-life, order, doubles/x2 (1)	1	[14]
7.	(i)	The slowest step (1)	1	
	(ii)	$2NO_2 \rightarrow NO + NO_3$ (1) $NO_3 + CO \rightarrow NO_2 + CO_2$ (1) (or similar stage involving intermediates)	2	[3]
8.	HCl a releas 1 mol	and CH ₃ COOH have same number of moles/ se same number of moles H ⁺ / le of each acid produce $\frac{1}{2}$ mol of H ₂ (1) in CH ₃ COOH < [H ⁺] in HCl/		
	Mg + Mg +	$2HCl \rightarrow MgCl_2 + H_2 (1)$ $2CH_3COOH \rightarrow (CH_3COO)_2Mg + H_2 (1)$		
	or Mg +	$2H^+ \rightarrow Mg^{2+} + H_2$ (1)(1)	4	[4]
9.	(i)	constant half-life (1)	1	
	(11)	rate = $k[N_2O_5]$ (1) Common error will be to use '2' from equation.	I	
	(iii)	curve downwards getting less steep (1) curve goes through 1200,0.30; 2400,0.15; 3600,0.075 (1)	2	
	(iv)	tangent shown on graph at $t = 1200 \text{ s}$ (1)	1	

	(v)	$3.7(2) \times 10^{-4}$ (1) mol dm ⁻³ s ⁻¹ (1) ecf possible from (ii) using $[N_2O_5]^x$ $(2^{nd} \text{ order answer: } 2.2(3) \times 10^{-4})$	2	
		(2 order answer: 2.2(5) ~ 10)	7]	']
10.	(i)	slow step (1)	1	
	(ii)	$(CH_3)_2C=CH_2 + H_2O \rightarrow (CH_3)_3COH (1)$	1	
	(iii)	H ⁺ is a catalyst (1)		
		H ⁺ used in first step and formed in second step/ regenerated/ not used up (1)	2	
	(iv)	rate = k [(CH ₃) ₂ C=CH ₂] [H ⁺] (1) common error will be use of H ₂ O instead of H ⁺	1	
			[{	6]